7 Does Being Together for Years Help Comprehension?

Michael F. Schober and Laura L. Carstensen

People in long-term relationships are said to be able to communicate volumes with a single word or glance because they can rely on shared knowledge and experiences. Does this shared background also improve communication about unfamiliar things? In an experiment, 96 people (old, middle-aged, and young, matched for education) conversed with their spouses or with opposite-sex strangers to match unfamiliar geometric shapes and photographs of unfamiliar children. People were less accurate, less confident, less efficient, and less likely to entrain (use the same descriptions) with their partners for the unfamiliar shapes than for the photographs of children. Older pairs were almost as accurate as younger pairs, but they were less efficient and less likely to entrain. Although married couples were more confident that they had understood each other, there was little evidence that they were more accurate, efficient, or likely to entrain than were the strangers. In this chapter, we discuss how this suggests that people in long-term relationships may not learn much about each other's communicative habits beyond the content of their shared experiences.

INTRODUCTION

Conversations between people who know each other are different from conversations between strangers. Intimates can use terms that other people cannot understand (Clark & Schaefer, 1987; Fleming & Darley, 1991) by referring to experiences or events they alone have shared. They use what has been called an "implicit" style (Hornstein, 1985), seeming to communicate volumes with one small phrase or utterance. They ask each other fewer questions (Kent, Davis, & Shapiro, 1981), they use abbreviated expressions and ellipses, and they shift topics rapidly without explicit transitions (Hornstein, 1985).

How can they do this? Part of the answer is in what has been called their common ground (Clark & Marshall, 1981): the knowledge, beliefs, and assumptions that two parties share (and believe that they share). People can take as their common ground what they perceive and experience together (physical co-presence), what they talk about together (linguistic co-presence), and what they can infer is common knowledge within the various communities they know they belong to.
Does Being Together for Years Help Comprehension?

enduring intimate relationship in life; and indeed research on long-term marriage paints a positive picture of the developmental course of these relationships in later life. Marital satisfaction, studied longitudinally, increases after retirement (Guilford & Bengston, 1979). Older couples report fewer conflicts and less severe conflicts than middle-aged and younger couples do (Levenson, Carstensen, & Gottman, 1993). Moreover, observational research examining couples while they resolve emotionally charged conflicts reveals that older couples express less negative emotion and more positive emotion to one another when they converse about these “hot” topics (Carstensen, Gottman, & Levenson, 1995).

Of course, marital conflicts and everyday conversation between spouses centers around issues that are well rehearsed, perhaps even scripted. Thus, these studies tell us little about the facility with which older couples deal with new material. When conversing about new topics, knowledge of the communicative habits of one’s partner may improve understanding or attentiveness, but it could just as easily hinder understanding. Levenson et al. (1993), for example, found that older couples ranked “communication” at the top of a list of potential conflicts (even though the mean rating of conflict severity was lower than for middle-aged couples). It is possible that people who know each other well will avoid topics, phrasings, or references they know could cause offense, causing them to speak more circumspectly or cautiously, and less effectively. They might extend discussion beyond what is essential for understanding or slip into unprofitable conversational routines or off-the-topic arguments.

Another issue the current study addresses is whether the length of time that partners have been together influences understanding. We compared understanding in married couples who had been together for three different lengths of time: only a few years, about 25 years, and over 40 years. The different groups were also of different ages because of the relative scarcity (and nonrepresentativeness) of recently married older people who matched other selection criteria. This means that in this study, age was perfectly confounded with length of relationship, and any differences among the three groups could be explained by age, cohort, or length of relationship. To help distinguish between relationship length and age/cohort, we compared interactions between spouses to interactions with age-matched strangers. To further ensure comparability, strangers were also married people, speaking with partners who were not their spouses. Thus, any differences across the three groups that are the same for married couples, and strangers can reasonably be attributed to age or cohort as opposed to relationship length.

PREVIOUS RESEARCH

Relationship and Conversational Reference

Little previous research has directly addressed whether knowledge of communicative habits affects understanding, because in most studies of intimates the conversation is about topics on which they already share some common ground. Thus, the observed differences in intimates’ and strangers’ conversations

(community co-membership) (Clark & Carlson, 1981). It is presumably because friends share substantial common ground that they refer to mutually known people and events, and to each other’s lives, more often than strangers do (Planalp, 1993). Common ground explains how friends can make references that only the two of them understand, and that deceive or mislead overhearers and conversational bystanders (Clark & Schaefer, 1987; Fleming & Darley, 1991).

Much remains unknown about the individual and interactive processes involved in common ground, although there has been substantial theorizing and argumentation (for reviews, see Krauss & Fussell, 1996; Pickering & Garrod, 2004; Schober & Brennan, 2003). Issues under dispute include the precise nature of the mental representations involved and how they connect with other kinds of memory (e.g., Horton & Gerrig, 2005), the degree to which interlocutors’ representations are as aligned as they appear (e.g., Schober, 2005), what affects partner adaptation and its time course (e.g., Keysar, Barr, & Horton, 1998; Metzing & Brennan, 2003), and what aspects of language use are affected (e.g., Schober & Brennan, 2003). For purposes of experimental rigor, controlled studies have, most often focused on how strangers build common ground. This means we end up knowing notably less about the long-term common ground that builds over years of knowing an interlocutor: how fine-grained and detailed it is and how it affects speaking style and conversation.

Clearly long-term conversational partners share a great deal of declarative knowledge, and so it makes sense that they will talk differently about things they both know about than they would about those topics with strangers. In addition, one might hypothesize, long-term conversational partners may have other resources that strangers don’t. They may come to know their partner’s linguistic habits—syntax of forms or wordings the partner is liable to use, or whether the partner is verbose or concise. They may also come to know about each other’s interactive habits—what kinds of evidence of understanding are they liable to give each other. This could include (tacit or explicit) knowledge of how attentive the partner is, whether the partner prefers to complete utterances or to interrupt the moment he or she is understood, and whether the partner’s uh-huh tendencies to signs of understanding or requests for more information.

If long-term experience with a conversational partner brings this kind of knowledge, then long-term conversational partners should understand each other better than comparable strangers do even when talking about something that is not part of their previously shared experiences and perceptions. In the study we describe here (see also Bortfeld, Leon, Bloom, Schober, & Brennan, 2001, for other analyses of the data set), we compared long-term partners’ and strangers’ accuracy and efficiency of understanding in task-oriented conversations about novel stimuli on which none of them shared experience. If the long-term partners understand each other better than the strangers do, this would suggest that they have knowledge about each other’s interactive habits beyond the content of their shared experiences.

In the study, we focused on one kind of long-term conversational partner: married couples. For many adults, the marital relationship represents the most...
could result entirely from the content-based knowledge they share, rather than from any additional knowledge of each other’s linguistic and conversational habits. However, two laboratory studies come closer to addressing the issue. One study (Fussell & Krauss, 1989) examined how friends wrote descriptions for each other of abstract line drawings about which they did not share previous common ground. Friends understood each other’s written descriptions of abstract line drawings a bit better than strangers did, but the differences were small. Contrary to Fussell and Krauss’s expectations, friends’ messages did not differ from the strangers’ in length or on any of their other measures. The reported closeness of the friendships, number of shared interests, similarity of backgrounds, and length of acquaintance did not predict friends’ accuracy of understanding.

The lack of strong findings in the study is hard to interpret. First, subjects wrote the descriptions rather than interacted conversationally, and so the friends might not have been able to use metacommunicational knowledge about each other that could have made differences between friends and strangers larger. Second, the subjects did not know each other well; most had known each other less than six months, and a few did not even know their partners’ last names. Perhaps developing the metacommunicative knowledge that might show an advantage in understanding for intimates does not develop in brief acquaintanceships.

Another study (Boyle, Anderson, & Newlands, 1994) compared conversational descriptions of locations on unfamiliar maps by friends and strangers. Friends, who had known each other for two years on average, performed marginally better on the task than strangers did. Their conversations differed in some ways: unlike in the Fussell and Krauss (1989) study, friends took more words and turns, but they interrupted each other marginally less often than strangers did and had less overlapping speech. These results give a mixed picture. The task performance results marginally support the notion that experience with a partner brings advantages to understanding beyond those brought by discussing topics that are part of common ground, but the word counts suggest that friends are less efficient than strangers, perhaps because they have other (social) goals beyond efficient task performance. Because length of acquaintance was not factored in, it is unclear whether the effects were stronger among friends who knew each other better.

Age and Conversational Reference

On conversational tasks, older adults are known to perform differently than young adults in laboratory settings; in one study (Gould, Trevithick, & Dixon, 1991), for example, old adults engaged in non-task-relevant discussion notably more than young adults did. By some accounts, linguistic capabilities and performance decline with age (e.g., Emery, 1986; Kemper, 1988). Older adults, for example, may be less able to adjust their utterances for different partners (Horton & Spieler, 2007). However, by other accounts the changes, if any, are small and subtle (Salthouse, 1991). In general, the many studies on language performance in aging vary so much in their methodologies and their corresponding results that it

is hard to predict exactly what sorts of age-related changes might come into play in the conversational setting in which we are interested.

One exception is Hupet, Chantaine, and Nej’s (1993) directly relevant comparison of how young and old pairs of strangers referred to unfamiliar figures in task-oriented laboratory conversations. In this study, old pairs (mean age 70 years) spoke differently than the young pairs (mean age 24 years) did. Not only did the old pairs use more words and turns per reference, but also their language was more complicated. It had greater lexical variety, longer utterances, more relative clauses, more right-branching clauses, and greater mean length of subordinate clauses (for related results, see Gould & Dixon, 1993; Horton & Spieler, 2007; Kogan & Jordan, 1989). Old pairs were less likely to consider previously shared information. In describing stimuli that their partners had already described, partners in old pairs used the same term as their partners had only 28% of the time, while the young pairs used the same terms 55% of the time. Old pairs were also less likely than young pairs to use definite references like “the little man kneeling down,” which assume prior shared knowledge, and they were more likely to use indefinite (“a little man kneeling down”) and completely new descriptions of already-described stimuli. Based on their pretesting of their participants, Hupet et al. (1993) ruled out that these differences resulted from working-memory capacity differences or specifically linguistic deficits in aging; rather, they suggest, old people either are more likely to forget what their partners said before (a memory capacity hypothesis), or they may have stored irrelevant information and private thoughts along with what their partners said because of inefficient inhibitory mechanisms (a memory content hypothesis).

The current study extends the Hupet et al. (1993) study in two ways. First, we examined married couples of three different age ranges rather than two (we include middle-aged couples). Thus, we could determine whether Hupet et al.’s age-related changes in referring are linear over the life span. Second, we manipulated the novel topics under discussion. In the Hupet et al. study, participants described unfamiliar abstract geometric shapes (following Krauss & Weinheimer, 1966), and the old participants were relatively poor at using the same terms their partners used. This may be because speakers do not already have words for abstract shapes, or perhaps such figures are unusually hard to process or remember. We suspect that speakers may be better at using shared descriptions if the unfamiliar topic is more similar to things about which they ordinarily talk. Therefore, in the current study participants described not only abstract shapes but also photographs of unfamiliar children. This should tap into the more common and concrete pastime of discussing other people’s appearances and identities and might allow participants to refer to shared declarative knowledge.

METHOD

Participants. Ninety-six married college-graduate adults (48 mixed-sex pairs) participated in the study for $25.00 payment. Sixteen pairs were young adults (mean age of 28.8 years, SD 2.2 years, ranging from 24 to 33) who had been
married for a mean of 3.75 years (SD 1.7 years). Sixteen were middle in age (mean age 47.9 years, SD 3.4 years, ranging from 42 to 56), married for a mean of 25.2 years (SD 3.1 years). Sixteen were old (mean age 67.1 years, SD 2.7 years, ranging from 63 to 72), married for a mean of 42.6 years (SD 2.8 years). All were native speakers of American English. To maximize comparability across the age groups, all pairs were contacted through the Stanford Alumni Association, so at least one member of each pair was a Stanford University graduate; all non-Stanford alumni were graduates of Bay Area colleges. The sample was highly educated; the groups did not differ in years of post-school education, averaging 5.38 (young), 6.13 (middle), and 5.38 (old) years. People with notable hearing loss were disqualified.

So that we could further assess comparability across the age groups, participants completed several tasks in the laboratory in addition to the experimental task. Cognitive abilities were assessed using a test of verbal fluency (animal naming), as well as the Digit Symbol subtest of the Wechsler Adult Intelligence Scale-Revised (1981). In addition, health status was screened using the Wahler Health Symptoms Inventory (1983), which surveys the type and frequency of physical complaints people experience in everyday life. Participants in all age groups did not differ in the number of animals generated, F(2, 93) = 0.10, n.s., nor in physical health symptoms, F(2, 93) = 0.35, n.s. The usual age difference in digit symbol performance (Lindenberger, Mayr, & Baltes, 1993) was observed; old adults completed reliably fewer digit substitutions (52.7) than middle-aged adults (64.6), who completed reliably fewer than young adults (71.0), linear trend F(1, 95) = 57.73, p < .0001. However, aside from this (expectable) difference, the age groups were reasonably well-matched, although, no doubt, all subsamples were positively biased relative to the population in terms of education, physical health, and verbal fluency.

Ratings of marital satisfaction differed across groups; middle-aged partners rated themselves as reliably less satisfied with their marriages than the young couples (F(1, 95) = 5.50, p < .03) and the old couples (F(1, 95) = 8.99, p < .005). This finding is consistent with the larger literature on marital quality: middle age is the period characterized by lowest levels of marital satisfaction (Carstensen, Graff, Levenson, & Gottman, 1996). Young couples rated their marriages as reliably less traditional than the middle-aged couples, who rated their marriages as less than the old couples, linear trend F(1, 95) = 19.97, p < .0001. However, the different age groups did not differ in their ratings of how egalitarian their marriages were.

Stimuli. One set of stimuli consisted of sixteen abstract geometric figures, originally from or modified from the Chinese game of Tangram (Eilfers, 1976), taken from Schober and Clark's (1989) study of referring (see Figure 7.1). These figures are similar to those used as stimuli in Hupet et al. (1993). A second set of stimuli comprised sixteen black-and-white photographs of children, taken at a private school in Mexico (see Figure 7.2 for examples).

Procedure. Ninety-six participants performed a matching task in mixed-sex pairs, either with their spouse (24 pairs) or with a married stranger of the same age group (24 pairs). Two married couples who had not met each other were brought into the lab at the same time. Participants performed the matching task either with their spouse or with the opposite-sex partner from the other couple. The task was audio- and videotaped, for subsequent transcription and coding.

In the task, one person, the director, viewed an array of 12 figures (or photos) selected from the full set of 16 (this was so that participants could not use a process of elimination to perform the task). The partner, designated the matcher, on the other side of a visual barrier, saw the full set of 16 figures (or photos) in no particular order. The director's task was to get the matcher to arrange the figures in the same order as in the director's array. The director and matcher could say anything they liked to each other to complete the task, so long as they matched the figures in sequential order following the director's array.

Each pair performed the matching task four times. In two rounds, they matched the photographs of children, and in two rounds they matched Tangram
Expressing Oneself/Expressing One's Self

RESULTS

We focus on four main measures of understanding: how the photographs were interpreted, the accuracy with which pairs of photographs were identified, and the accuracy with which children were identified. The first two measures were based on the photographs alone. The accuracy was calculated using the photographs alone. The second measure was based on the photographs alone. The accuracy with which pairs of photographs were identified was calculated using the photographs alone. The third measure was based on the photographs alone. The accuracy with which children were identified was calculated using the photographs alone. The fourth measure was based on the photographs alone. The accuracy with which pairs of photographs were identified was calculated using the photographs alone.

A more stringent test of the accuracy of understanding the task was the extent to which pairs of photographs were identified as being equally accurate. Mated pairs were more likely to have made errors than were non-mated pairs. Overall, younger pairs made fewer errors than older pairs. Older pairs did not make fewer errors than younger pairs, and were not more accurate than younger pairs. The results are shown in these diagrams.

Overall the accuracy of the results was very high. The youngest pairs were the most accurate, and older pairs were less accurate. The results are shown in these diagrams.

Expressing Oneself/Expressing One's Self
true whether partners were married or strangers, interaction of age × marital status $F(2, 42) = 0.21$, n.s. (see Figure 7.3). Young pairs were more efficient (1593 words) than middle-aged pairs (2082 words), who were more efficient than old pairs (2256 words), linear trend $F(1, 42) = 5.73, p < .03$.

One more measure that is relevant to the issue of comprehension efficiency is the extent to which pairs were able to speed up their descriptions the second time they discussed the photos or Tangrams. We measured this by taking the ratio of the number of words the pair uttered in the second round of the task to the number of words in the first round. Here there were virtually no reliable differences for the different stimulus types and ages. For example, married couples seemed to improve their efficiency somewhat more than strangers did, averaging .63 as many words in the second round as in the first, compared to the strangers' .74, but this difference only approached reliability, $F(1, 42) = 2.68, p = .109$.* And although the means suggest that older pairs improved their efficiency less than young pairs (.63, .66, .76, respectively), these differences were not at all reliable, $F(2, 42) = 1.41$, n.s.

Therefore, married couples did not seem to be reliably more (or less) efficient than strangers on this task. One possibility is that these word counts are not a sensitive enough measure of efficiency. Married couples in one laboratory experiment have been shown to engage more and more over time in non-task-related discussion, compared to strangers (see Gould, Kurzman, & Dixon, 1994). However, this does not account for the lack of reliable differences here; the amount of non-task-related discussion in this study was negligible. When we coded for the rare off-task discussion and removed those words from the word counts, the adjusted word counts show the same pattern of results. In any case, the possible differences between married couples and strangers are small enough to be undetectable with this sample size, even though differences from age group and topic were detectable.

* It only made sense to examine improved efficiency for the second round compared with the first, rather than over all four rounds, because the topic (Tangrams or children) changed after two rounds.

FIGURE 7.4 Entrainment (likelihood of using same description as partner did), photographs of children.

Entainment. The extent to which people use the same terms has been argued to index whether they have reached a shared perspective (e.g., Bortfeld & Brennan, 1997; Brennan & Clark, 1996; Garrod & Anderson, 1987; Schober, 1998). Because lexical equivalence can be coded in various ways, we used two different criteria to determine how often a director used the same words in Round 2 as his or her partner already had in Round 1 to describe the same figure. Under the strict criterion, only verbatim descriptions were counted as the same; these included shortened versions of the Round 1 descriptions, as when “A geisha walking to the right, or kneeling—it has a square corner in the lower left-hand side” was re-described as “the geisha,” or when “A girl with a dirty white shirt and an insignia on the right—she’s pointing” was re-described as “the pointer with the insignia.” We also included descriptions with only minor variations, like “the guy biting his lip” for “thin boy biting his lip.” Under a more lenient criterion, descriptions that included at least one previous term but that also might include additional descriptors were counted as the same. Under this criterion, for example, “our ‘I’ with the arm waving to the left” was counted the same as the original “lower ‘I’ with a left arm going up to the left, with a pointy bottom.” Similarly, we included “the guy that looks like a goofball—he has a cartoon on his shirt” as the same as the original “a boy with a very wide grin leaning toward the camera and a cartoon on his T-shirt—it says ‘Greetings’.” Both criteria produced the identical pattern of results; here we report the results using the more lenient criterion.

Overall, people were much more likely to entrain on descriptions of children (94%) than on descriptions of Tangrams (78%), $F(1, 38) = 44.43, p < .001$* (see Figure 7.4 and Figure 7.5). This differed by age group, linear trend on the interaction of age × stimulus type, $F(1, 38) = 6.05, p < .02$; older pairs entrained far less

* The degrees of freedom in all these analyses reflect the fact that partial data from four cases were unrecoverable due to technical errors at the time of coding.
FIGURE 7.5 Entrainment (likelihood of using same description as partner did), Tangram figures.

for Tangrams than for photos. Married couples were no more likely to use the same expressions than strangers were, 86% vs. 87%, F(1, 38) = 0.32, n.s.; this was true for Tangrams and photos, interaction of marital status × stimulus type F(1, 38) = 0.95, n.s. But members of younger pairs were more likely to entrain on the same expressions than older pairs were, linear trend F(1, 38) = 9.67, p < .005; overall, younger pairs entrained 92% of the time, middle-aged pairs entrained 86% of the time, and old pairs entrained 82% of the time. This was not affected by whether partners were married or not, interaction of age × marital status, F(2,38) = 0.19, n.s.

The entrainment rates in this study are higher than are those in the Hupet et al. (1993) study, but the difference is actually small under the more stringent criterion for lexical equivalence (entrainment rates for Tangram figures of 62% [young], 59% [middle], and 44% [old] in our study compared to 55% [young] and 28% [old] in the Hupet et al. study). However, note that the pattern of entrainment is the same—old pairs entrained much less than did young pairs. Whether old people entrained less because they disagreed with their partner’s earlier description or because they did not remember the earlier description is unclear from our data, but given the generally high accuracy rate, it probably is not because they had failed to understand the earlier description.

A complementary measure of entrainment is how often a director in Round 2 would introduce a radically different description than his or her partner had used to describe the same figure in Round 1, as in this example:

First description: “A futuristic windmill. Like a large triangle and then it has these two funny little triangles up at the top and a square in between.”
Partner’s description: “A donkey sitting. It’s a triangle with a flat bottom and a straight line up and then a head with two ears on top of it.”

FIGURE 7.6 Likelihood of using radically different description than partner did, photographs of children.

As Figure 7.6 and Figure 7.7 show, the same general pattern emerges as for use of the same expressions. In all pairs, speakers were more likely to use completely different expressions for Tangrams than for children, F(1, 38) = 45.36, p < .001. Older pairs were more likely to use different expressions than younger pairs were, linear trend F(1, 38) = 10.80, p < .003. But long-term relationship didn’t seem to make a difference; although the means hint at a possible difference, marital partners were not reliably less likely to use different expressions than strangers were, F(1, 38) = 0.15, n.s. This was true across all ages, interaction of age × marital status, F(2, 38) = 0.28, n.s.

FIGURE 7.7 Likelihood of using radically different description than partner did, Tangram figure
We expected that married couples might rely on description strategies that referred to their own common ground, as in this example from one of our old couples describing a photograph of a child:*

Director (D): The next one looks like a dead ringer for Ben.
Matcher (M): Oh, my gosh.
D: And, uh...
M: [laughs]
D: He, he also has a T-shirt. And uh, he has uh... Mickey Mouse on the front of the T-shirt, that ought to be easy.
M: Wait a minute! [laughs] have to study this. Okay. Now I see two T-shirts. Or three T-shirts of boys with Mickey Mouse on them.
D: Uh-huh.
M: So:
D: This one says “Mickey.”
M: They all say “Mickey”!
D: They all say “Mickey,” and this one has sort of a, uh, Indian or Aztec’s design below Mickey’s head.
M: Okay, and he’s kind of... the little boy is kind of grinning.
D: Yeah, looks like Ben.
M: And looks like Ben.
D: Don’t you think he looks like Ben?
M: Yeah, I guess he... guess he looks like Ben in *his*
D: *Why* sure.
M: And and Mickey’s above the Aztec design?
D: That’s correct
M: Okay.

Note that such a description strategy does not necessarily increase efficiency; here describing the figure as “looking like Ben” may well have complicated matters. In any case, such examples were rare. Overall, married couples really did not seem to use different strategies in this task than strangers did.

DISCUSSION

All four measures of understanding show a similar pattern. First, the nature of the novel topic under discussion mattered enormously. When people discussed the photos of unfamiliar children, they understood each other more accurately, with greater confidence, and with greater efficiency, and they were more likely to use the same terms as their partner had used. They were less accurate, less confident, and less efficient when discussing abstract geometric shapes (and less fluent, as reported in Bortfeldt et al., 2001). This was true for all age groups and no different for married couples and strangers. Second, older pairs were as confident and almost as accurate as younger pairs, but they were less efficient and less likely to use the same terms as their partner had used. The efficiency and entrainment results replicate Hupet et al.’s (1993) findings, and they extend them to include middle-aged pairs (see also Kogan & Jordan, 1989; Shewan & Henderson, 1988). On most measures where there were age differences, middle-aged pairs fell between young and old pairs. This suggests that age-related changes in referential communication may be continuous over the life-span.

Most centrally for our current purposes, on virtually every measure partners with long-term relationships were not reliably more accurate or efficient in talking about unfamiliar things than were strangers, and they were not reliably more likely to adopt their partner’s expressions. However, married couples did seem to be more confident that they understood each other. This suggests that people who have known each other a long time may not actually have learned as much about how the other talks about or understands new things as they think (for a related result, see Ryder, 1968). Certainly, any possible comprehension advantage from long-term relationship is dwarfed by other variables like age and topic.

These results are, of course, not the final word on this topic. First, our sample population was extremely well educated and high functioning; whether the results would extend to less educated or more poorly functioning couples is unclear. Second, it would be useful to further de-confound age and length of relationship by observing middle-aged and old couples who have only been together briefly, as well as same-sex long-term couples. Third, in our sample, middle-aged couples reported being less satisfied in their marriages than the young or old couples did. To the extent that marital satisfaction reflects good communication between the partners, our three age groups may have been less than perfectly comparable. However, the linear as opposed to curvilinear patterns in the results speak against this explanation.

So does being together for years improve comprehension? Our findings suggest that the years will have their effects—and, at least on this task, not particularly good ones—and that those effects will be the same with one’s spouse as with a stranger. However, we are not suggesting that married couples routinely fail to understand each other any better than strangers do. Many, if not most, discussions by long-term partners probably involve shared experiences, from which they can draw on their perceptual, linguistic, or community common ground. Even when they talk about novel topics, those topics are probably more like discussing photographs of children, for which accuracy, efficiency, and rates of entrainment were quite high, than like describing abstract geometric shapes. So the confidence that married couples often feel that they accurately and efficiently understand each other’s shorthand phrases and cues is not misplaced. However, our results suggest that this confidence should not, perhaps, extend as far as it does.

ACKNOWLEDGMENTS

This research was supported by NIA Grant RO1-8816 to Laura Carstensen and NSF grant IRI-9402167 to Michael Schober. Selected results were presented at the 38th Annual Meeting of the Psychonomic Society, Philadelphia, PA. We thank Susan Brennan for comments on an earlier version of this paper. We also thank Susan Charles.
Does Being Together for Years Help Comprehension?

